
NASA Contractor Report 189684

ICASE Report No. 92-34

,/

/
/

D
)

ICASE
OPTIMISTIC BARRIER SYNCHRONIZATION

David M. Nicol

(NASA-CR-1_gb84) OPTIMISTIC

3ARRIER SYNCHRONIZATION Final

Report (ICASE)

G3/59

N92-33630

Unclas

0116443

Contact No. NAS1-18605

July 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

fC/LSA
Nalional Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

OPTIMISTIC BARRIER SYNCHRONIZATION

David M. Nicol 1

Department of Computer Science

College of William and Mary

Williamsburg, VA 23185

ABSTRACT

Barrier synchronization is a fundamental operation in parallel computation. In many contexts,

at the point a processor enters a barrier it knows that it has already processed all work required

of it prior to the synchronization. This paper treats the alternative case, when a processor cannot

enter a barrier with the assurance that it has already performed all necessary pre-synchronization

computation. The problem arises when the number of pre-synchronization messages to be received

by a processor is unknown, for example, in a parallel discrete simulation or any other computa-

tion that is largely driven by an unpredictable exchange of messages. We describe an optimistic

O(log 2 P) barrier algoritlun for such problems, study its performance on a large-scale parallel sys-

tem, and consider extensions to general associative reductions, as well as associative parallel prefix

computations.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23665. Research was also supported in part by NASA

grants NAG-l-1060, NAG-l-If32, and NAG-I-995, and NSF Grants ASC 8819373 and CCR-9201195.

1 Introduction

Consider a computation where the processing is driven in whole or in part by the receipt, processing, and

generation of messages. An important motivating example is parallel discrete-event simulation, where a

message represents an event whose eventual execution may lead to the generation of further events, possibly

on other processors; however, distributed algorithms in general are often characterized this way. The run-

time behavior of such computations may be highly unpredictable, which creates a problem if one desires to

employ a barrier synchronization. A processor ought not synchronize until it has processed all messages sent

to it by processors prior to their own synchronization, yet this is difficult if the message generation activity

is unpredictable. In a parallel simulation whose synchronization is based on windows [13, ll, 5, 14], for

example, one synchronizes all processors at tile upper edge of the time window, say time t. If tile simulation

within the window is managed optimistically (e.g., using Time Warp[6]), then a processor that has simulated

all known workload up to time t may receive a message associated with simulation time s < t and be

forced to roll back. In the course of re-executing events in time interval Is, t] the processor may send new

messages to other processors who also appear to have already simulated to t, causing them to roll back as

well. Traditional barrier algorithms presume that a processor entering the barrier has completed all work

required of it; to call a barrier routine such as gsync() on an lntel iPSC multiprocessor is to lose the thread

of control until all processors have entered the barrier. This is clearly undesirable if the number of messages

to be received is unknown.

We show how modification of a standard algorithm (the butterfly barrier [3]) permits the use of barrier

synchronization when the total number of messages to be processed by a processor prior to the barrier

is unknown. There are two important elements to the algorithm. One is to permit a processor to enter

the barrier optimistically, before it is certain that it is finished with its pre-synchronization work. In this

our algorithm incorporates ideas from optimistic synchronization in parallel discrete event simulation. The

second important element is to have each processor keep track of the number of messages it has sent to and

received from each of log P sets of processors we call shells (there are P processors). Then, like a standard

barrier algorithm, a processor advances through log P steps, where at each step it synchronizes with a specific

processor. Unlike a standard barrier, two synchronizing processors exchange send/receive counts tabulated

for each shell, and from this information decide whether to advance to the next synchronization step, or

wait to receive and process further messages. At any time, receipt of a new computation message can roll a

processor back out of the barrier altogether, or a repeated synchronization message from a previous step can

alsoroll thesynchronizationprocessingbackto thatstep.OuralgorithmrequiresO(IogP) space on each of

P processors, and requires O(log 2 P) parallel time to execute.

The problem we pose already has at least three solutions. The concept of "virtual time" underlying

optimistic synchronization in parallel discrete-event simulations provides the first. Most optimistic simulation

methods employ a background calculation of the "Global Virtual Time (GVT)"[4]), essentially a point in

simulation time behind which it is guaranteed that no processor will ever to be required to roll back again.

A barrier of the type we desire at simulation time t can be implemented by simply requiring that a processor

m_t proceed past time t until the GVT advances up to t. llowever, most optimistic simulations invoke the

GVT calculation infrequently (e.g. every few seconds), as it is relatively expensive. Furthermore, the issues

of who invokes GVT, when it invokes GVT, and how often it invokes GVT loom large in such an approach.

One stiould note that barrier synchronization is not usually employed by optimistic simulations (with the

exceptions of Moving Time Windows[13] and Bounded Time Warp [15]), as such systems are capable of

rolling a processor back to the barrier point in the event it proceeds past it prematurely. Our algorithm

has tile advantages of being responsive to the immediate synchronization demands of the computation, of

supporting window-based simulation approaches, and of being applicable when the computation does not

otherwise synchronize on the basis of virtual time. We note in passing that our algorithm can be used to

compute GVT, for example, by synchronizing globally every A units of simulation time. Emerging from

the barrier at simulation time t a processor knows the GVT is t. A second solution is hardware-based. A

synchronization network is presently under development[10] where every processor stores in a network register

the least timestamp among all known events; the network computes and distributes to all processors the

mininmm such. This minimum provides instantaneous GVT information, so that a processor can synchronize

at t by merely waiting until the GVT reaches t. A third solution is really a family of solutions. One can

view completion of a barrier as the termination of a distributed algorithm. Many termination algorithms

already exist [8]; however, these algorithms generally view the system a.s being much more loosely coupled

than parallel systems. Furthermore, the complexity of these algorithms is measured in terms of numbers of

messages passed, rather than time to execute. In a parallel system there is a huge performance difference

between a computation that passes P messages serially, and one that passes P messages in parallel. In

fact, the Bounded Time Warp algorithm [15] employs a global synchronization point in simulation time, and

uses a linear-time token-passing distributed termination algorithm to implement the barrier. Nevertheless,

our algorithm has similarities to the "vector algorithm" proposed by Mattern [9], in that both track the

differencebetweenmessagessentandmessagesreceived.However,therearesubstantialdifferencesbetween

ourapproachandMattern's.Hisalgorithmreliesona circulatingcontrolvectorwith P components, that

serially traverses processors; ours accumulates counts in a logarithmic fashion, and has no serial component.

The fundamental communication pattern we use is based on the butterfly barrier [3]. Students of syn-

chronization should also read the comparative study of barriers on shared memory machines reported in

[2].

The principle contribution of this paper is to identify and solve a general synchronization problem by

bringing together ideas from optimistic parallel simulation, deterministic parallel synchronization, and dis-

tributed termination detection. We demonstrate that our solution has a relatively small cost, by comparing

it with the barrier synchronization routines provided by a large-scale multiprocessor.

The remainder is structured as follows. Section §2 introduces some notation, and uses it to describe a stan-

dard barrier synchronization algorithm. Section §3 describes our modifications, and proves the algorithm's

correctness. Section §4 evaluates the performance of our algorithm on large scale multiprocessors, Section

§5 extends the method to general associative reductions, and general associative parallel prefix operations,

and Section §6 summarizes this paper.

2 Background

Suppose that we can view every processor's behavior in terms of its response to messages. For example, a

processor might receive one or more messages, perform some computation, and possibly send new messages as

a result. The notion is quite general, encompassing scientific computations where the messages communicate

data at domain partition boundaries, to parallel discrete-event simulations, where a message represents an

event. A key difference between these two examples is that in the former case the message passing behavior

is predictable, whereas in the latter case it is not.

A barrier synchronization is introduced into the computation when we desire that the processors syn-

chronize globally. When the computation is performed correctly, this means that every processor will have

received and processed all messages for it prior to synchronizing, and no processor leaves the barrier until

all processors have received and processed all messages for which they are responsible prior to synchroniza-

tion. A processor leaving the barrier is assured that every other processor has already received all messages,

performed all work, and sent all messages that are logically required by the computation prior to the global

synchronization. This point is important: optimistic parallel simulations are very closely related to the

Dimension 3 [0,1,2,3,4,51

Dimension 2 [0,1,2] [3,4,5]

/\ /\
Dimension 1 [0,1] [2] [3,4] [51

/\ / /\ /
Dimension0 [0] [1] [2] [3] 14] [5]

Figure 1: Balanced tree created by splitting sets of processors ids.

algorithm we propose, and yet. do not provide this assurance. While our solution permits optimistic entry

into the barrier, our problem forbids an optimistic departure. Upon emerging from a barrier a processor can

be certain that its present state is correct..

Our problem arises in contexts other than parallel simulation. For example, consider a parallel searching

algorithm that performs load balancing by having a processor generate some nodes to evaluate, select some

for itself, and distribute the rest.. We might wish to use a barrier to establish termination, yet a processor

must be concerned about receiving additional workload after entering the barrier.

Next. we introduce some not.ation. Consider a system of P processors, for any P > 1. Define p, the

system dimension, to be the smallest integer such that P _< 2p. Our solution involves a balanced binary

tree whose elements are sequences of processor ids. The root node is To = [0, 1..... P - 1]. Given tree node

7:. = [i j], i _< j, we define T,'s left. chiht T2_+, = [i,..., 1-(i + j)/2]], and its right child (applicable

only if i < j) T.,,.+__= [[(i + j)/'21 + 1..... j]. Thus, children sets are defined by' evenly splitting a parent

sequence, with the "extra" member (if any) placed in the left. child. Also, we define the "dimension" of To

t.o be p, and the dimension of a child to be one less than it's parent's. The splitting process is applied until

the dimension 0 sequences are defined. Figure 1 illustrates the tree associated with P = 6.

Let T2,-+1 and T_+e in dinaension k be children of a common parent. As these sequences are nearly

balanced, we can pair their elements as follows. We say that processors i and j are neighbors in dimension

k if for some ul, i is the m 'h largest, element of T2_+1, and j is the mth largest element of T2,+2. We denote

this retationshil) by a function n, writing nk(i) = j and nk(j) = i. For example, in Figure 1, the neighbors

in dimension 2 are 0 and 3, 1 and 4, 2 and 5. When the size of two sibling sequences differs, the largest

member (say j) of the left sibling has no neighbor. In this case we say that j is a hermit in that dimension.

Also, we call the least member of any sequence the leader of that sequence.

Mostscalablebarrieralgorithmsemployatreeofsomekind,whereprocessorsrepresentingsiblingnodes

synchronizelocally,andaprocessorrepresentinga parentnodeisenabledto synchronizeassoonasitsown

childrenhavesynchronized.Oneapproachis to requiretheleaderofa sequenceto representthesequence

in this synchronizationprocess.In ourexample,in dimension0 we'dhave0 synchronizewith l, and3

synchronizewith4; in dimension1wehave0synchronizewith2,and3 synchronizewith 5;in dimension

2, wehave0 synchronizewith3. At.anypointin tile barrieralgoritlml,if the leaderof asequenceS is

attempting to synchronize with some other processor, then we know that all processors in _q"have entered

the barrier. Observe that only the processors representing T1 and T2 will know when all processors have

entered the barrier. In this case, a broadcast, step is required to notify the remaining processors. This is

usually accomplished by having the leader of a tree node release the leaders of its children, who in t.urn

release the leaders of their children, and so on.

Another approach avoids the broadcast step by requiring every processor in a tree node to determine for

itself when that tree node is synchronized with its sibling. A processor synchronizes with its neighbor in

dimension 0, then its neighbor in dimension 1, and so on through dimension p- 1. If a processor i successfully

synchronizes with its dimension k- 1 neighbor, then we know thai all processors in the dimension k sequence

S containing i have entered the barrier. Thus, a processor is free to leave the harrier once it is synchronized

with its neighbor in dimension p - 1. One minor difficulty occurs if processor i in sequence S in dimension

k is a hermit there. A solution is to have i wait. to be notified by the leader of S's sibling, which is i + 1.

In our example, in dimension 1 we have processor 1 wait for a message from 2, and processor 4 wait for a

message from 5. When this occurs, we call the leader a messenger in dimension k, and define 7*k(i) = i + 1.

A messenger doesn't need to receive a synchronization message from its hermit, as it will synchronize with

its own neighbor.

In the remainder we will call the algorithm above the standard barrier algorithm. A high level description

is given in Figure 2. Our solution involves modification of this algorithm.

A little more notation will aid our discussion. For any processor i and dimension k, let Ck(i) denote the

sequence in dimension k that contains i. For any two processors i and j, define their distance d(i,j) = k if

k is the largest dimension in which i and j are not in the same sequence. The table below gives d(i,j) for

the case of P = 6.

StandardBarrier Synchronization Algorithm (viewed from Processor i)

1. D=O;

2. If i is a messenger ill dimension D, send a synchronization message to i - 1.

3. If i is not a hermit in dimension D, send a synchronization message to do(i).

4. Wait until a synchronization message is received from riD(i).

5. D= D+ 1;lfD=p, exit;

6. goto (2)

Figure 2: Standard Barrier Synchronization Algorithm

i\j 0 1 2 3 4 5

0 0 1 2 2 2

1 0 -- 1 2 2 2

2 1 1 -- 2 2 2

3 2 2 2 -- 0 1

4 2 2 2 0 -- 1

5 2 2 2 1 1 --

For every processor i and dimension k, define ,5'k(i) to be the set of all processors j with d(i,j) = k. We

call the collection of Sk(i) (k = 0,... ,p- 1) processor i's shell sets. An intuitive understanding of Sk(i) is

as the set of processors represented by the sibling of [i]'s dimension k ancestor. Another view is that Sk(i)

is the set of processors with whom i establishes synchronization in dimension k.

3 An Optimistic Barrier Synchronization Algorithm

The problem we pose has two components. First, we must ensure that the thread of control is not lost by

calling a barrier routine, as we may have to roll back out of the barrier. Secondly, we have to ensure that

no processor believes it has completed the barrier before it is certain that the processor has received all

pre-synchronization messages eventually destined for it.

Even with provision for rollback, simple optimistic execution of a barrier synchronization will not ensure

that a processor not leave a barrier prematurely. For example, consider a four processor system where at

some time t processor 0 sends a message to processor 3 and heads into the barrier. It is quite possible for

the processors to exchange synchronization messages (0 with 1 then 3, 1 with 0 then 2, 2 with 3 then 0, 3

with 2 then I) and appear to be globally synchronized before the computation message from 0 is recognized

by3. Ourproblemformulationforbidstheseprocessorsto departthebarrier,yetthisispreciselywhat.they

will doif werelyonlyonrollbackto enforcethesynchronization.Thisexamplehighlightsthefactthat a

correctbarrieralgorithmmustaccountformessagesthataresent,butnotyetreceived.Themodifications

wemaketo thestandardalgorithmdopreciselythat.

Theremainderof thesectionseparatelyaddressestheproblemsof managingmessagecounts,specifying

thebarrieralgorithm,andprovingits correctness.

3.1 Managing Message Counts

Our solution requires that every processor i maintain, for every shell Sk(i) (k = 0,...,p- 1), a count of

messages it has sent to processors in Sk(i), and a separate count of messages it has received from Sk(i) t.

These counts (called Sendk({i}) and Recvk({i}), k = 0,..., p- 1) should include all messages relevant to the

computation, but should not include the synchronization messages sent as part of the barrier implementation.

Between barriers these counts increase monotonically, they are never reset, as a result of rollback. Immediately

following successful completion of a barrier the counts are cleared.

In the standard barrier algorithm, a single step synchronization between i and nk(i) serves to establish

synchronization of two disjoint collections of processors, Ck(i) and Ck(nk(i)). Now suppose that processors

i and nk(i) additionally exchange counts of messages sent to and received from these two sets of processors

(if i is a hermit it does not send counts to n_(i)). For example, suppose they detect that the total number of

messages sent by processors in Ck(i) to processors in Ck(nk(i)) is larger than the total number of messages

received by processors in Ck(nk(i)) from processors in Ck(i)). Processors in Ck(nk(i)) will eventually receive

the missing messages, and be rolled back out of the barrier. Consequently neither processor i nor processor

nk(i) ought to advance to the next dimension. If the two pairs of send/receive counts match as required, we

will say that i and nk(i) are "in agreement" at step k.

How then can i and nk(i) have available counts of messages between Ck(i) and Ck(nk(i))? Observe that

Sk(i) = Ck(nk(i)), and that the Sendk and Recvk counts in processor i and every other processor in Ck(i)

tabulate the number of messages sent to and received from Sk(i). When i and n0(i) synchronize, they can

exchange their counts relating to this set, and combine them. When i synchronizes with nl(i) it can send

the combined i and no(i) counts, and receive the combined n_(i) and no(n_(i)) counts. Continuing in this

fashion, by the time i reaches dimension k, it will have accumulated the send/receive counts of all processors

1Actually, one need only maintain the difference between these two counts. This optimization reduces the conununication
load of our algorithm; however, it is easier to explain in terms of separate counts.

in (Tk(i) relating to Sk(i). For that matter, it can have accmnulated the send/receive counts relating to all

shells ,5',,,(k), m > k.

Our modified barrier algorithm hinges on the observation above. For all k = 0,...,p- 1 and m =

k p- 1 define TotalSendm((?k(i)) to be the total number of messages sent by processors in C_(i) to

processors in £',,_(i); similarly define TotalRecv,_((:k(i)) to be the total number of messages received by

processors in Ck(i) from processors in 5;,,(0. These counts are defined to describe the situation after all

pre-synchronization messages have been generated, received, and processed. Since (Tk(i) is the union of

disjoint sequences (?_-1(i) and (Tk-l(nk(i)), it is evident that whenever m __>k:

I TotalSend_({i}) for k = 0
TotalSendm ((:k(i))

I 7'otal,gendm(Ck_l(i)) + Total,gendm(6"k_l(nk_m(i))) for k > 0 ,

and

for k = 0TotatReev,_(C:k(i)) = TotalRecv,,,(_:k_i(i)) + TotalRecvm(C'j:_l(nJ:_l(i))) for k > 0 .

In the course of synchronization, a processor will not necessarily know these final send/receive counts. It

can only tally the numbers of messages it has seen itself with similar counts reported by other processors.

We will approximate each TotalSend,,((:j:(i)) count with a count .%nd,,,((7_(i)) that is computed using the

aggregation equations specified above (replacing each instance of TotalSend with a corresponding Send);

we similarly approximate each TotalRecvm(Ck(i)) with a count called Recv,,_(Ck(i)). When processor i

attempts to synchronize in dimension k, it includes in its synchronization message to nk(i) (and to i - 1, if

i is a messenger) two vectors that estimate completed send/receive counts:

and

.S'enaV (i) =

RecvVecj:(i) = [Reevk(Ck(i)), ., Recvv_,(Cj:(i))].

Figure 3 illustrates the information exchanged by two processors i and nk(i). Here we suppose that i

is a member of the sequence labeled A, and nk(i) is in the sequence labeled B, both in some dimension

k. Sets D and E are Sv_2(i) = .%_2(n_(i)), and ,5'v_t(i) = ,5'v_l(nk(i)), respectively. The components of

SendVeck(i) are the counts of messages sent by processors in A to processors in B, D, and E; RecvVeck(i)

contains the number of messages received by processors in A from B, D, and E. Similarly, the compo-

nents of SendVeet(nk(i)) are the counts of messages sent by processors in B to processors in A, D, and E;

Recv_¥ex(nk(i)) contains the number of messages received by processors in B from A, D, and E. When i

°..]

__)D l...] [...1
A B['-'] ['"] [......] ['"] "]

Figure 3: Graphical depiction of information passed when i (in A) synchronizes with he(i) (in B). i gives

nk(i) send/receive counts between processors in A and B, A and D, A and E. n,(i) gives i send/receive

counts between processors in B and A, B and D, B and E.

and nk(i) are in agreement they may combine these values to determine the send/receive counts between

processors in C and D, and between C, and E.

3.2 Algorithm Specification

In our solution processor i enters the barrier logic and passes through as many dimensions as possible until

it either completes, reaches a dimension k for which there is yet no synchronization message from nk(i)

(or a messenger), or the message fails to indicate agreement. Upon completion failure processor i exits

the barrier logic to permit receipt of further messages (either computation and synchronization messages).

When a processor reenters the barrier logic it may not need to step through dimensions it has already passed

through; for example, if i leaves the barrier logic because nk(i) has not yet sent its synchronization message,

on reentry it may return directly to the dimension k step. However, if i is rolled back in the meantime it

may need to start over in dimension 0, or possibly in some other dimension j < k. The proper point of entry

is given by state of the barrier, a pair (D, s). D is the current working dimension, and s is 1 or 0, depending

on whether the processor needs to send a synchronization message to nk(i) (and to i- 1, if i is a messenger)

or not. For example, if i leaves the barrier on failure to find a synchronization message from nk(i), the

barrier state on departure is (k, 0). If the barrier state is not altered by a rollback, then on i's reentry it need

not resend the synchronization message--it just checks again for the synchronization message from 7tk(i).

On the other hand, if i's barrier is rolled back due to receipt of a computation message or re-receipt of a

synchronization message in some dimension j < k, then the barrier state is reset to (j, 0), (use j = 0 if the

rollback is due to a computation message).

__.__Receive synchronization message
(for ihis barrier phase)

l no synch rnsgs

for this phase

Receive computation message 1
(for this Barrier phase) ,j

l msg for this phase

I Pr°cess message 1(D,s) = (0,1)

L

I

Store message](D,s) = (min(D,j),l)

no msg

¢

I Barrier Logic "_)

not done

Figure 4: Flow diagram of processing logic u_sing an optimistic barrier

done

Figure 4 illustrates a flowchart of processing that uses an optimistic barrier. Synchronization messages

are given highest priority (although this is not absolutely necessary), and barrier processing is attempted

only if there are no known computation messages to process. Entering the barrier logic, the processor

pushes through as many dimensions as it can. On passing through dimension p- 1 the processor may leave

tile barrier. Otherwise, the thread of control is returned to the user program to receive and process any

computation messages that may have arrived since the processor last checked.

Tile processing shown assumes that messages from processor i to j are delivered in the order in which

they are sent (a condition usually satisfied by parallel machines). If this condition cannot be guaranteed

(or if synchronization messages are not given highest receipt priority), our algorithm works provided that

synchronization and computation messages are tagged with a "phase" identifier, e.g., the number of global

barriers completed so far. Phase identification prohibits a processor from accepting a phase k synchronization

or computation message before it has completed its phase k - 1 barrier. In practice, only one bit of phase

identification is needed (odd or even phase); in our Intel iPSC implementation we add this bit to the message

type identifier.

Before specifying the barrier logic in more detail, we consider some important implementation issues.

First there is the problem of determining whether a given neighbor or messenger has sent a synchronization

message, and making sure that we access the last such sent from a given processor. To address this, it

10

is straightforward to maintain an array of synchronization messages, indexed by dimension. If we can

assume that the system always delivers messages between two processors in the order they are sent, then a

synchronization message from nk(i) (or a messenger in dimension k) is simply copied into the k th element of

this array, overwriting whatever may be there already. If the system may deliver messages out-of-order, we

just include another count field in the message. A sender records the number of synchronization messages

it has sent to the receiver thus far; the receiver can compare the field of a newly received message with that

of its current copy. Late messages are simply discarded.

Another issue concerns definition of the barrier "state". Processor i can enter the barrier at dimension

k > 0 and be required to send vectors ,_qendVeck(i) and RecvVcck(i). These vectors depend on synchronization

messages from neighbors and messengers in lower dimensions; rigorously there is no need for filrther harrier

state, since those messages are available to support recomputation of the vectors. However, if the barrier

is at dimension k, then we know that SendVeck(i) and RecvVeck(i) have already been computed. Rather

than recompute them on reentry, it is convenient to include them as part of the barrier state. Thus we save

a copy of these vectors once they are computed and sent. Each reentry to the barrier will then be able to

recover the saved vectors.

Rollback processing deserves special mention. Either the receipt of a computation message or the receipt

of a synchronization message in dimension j < D causes a rollback. The rollback consists entirely of resetting

the barrier state (D, s) as appropriate. It is not necessary to cancel the synchronization messages already

sent in dimensions j through D, for they will be resent, and in being resent may cause rollback.

Another optimization is also possible. Before sending a synchronization message in dimension k we can

compare the present vectors SendVec,_(i) and RecvVeck(i) with their counterparts (if any) the last time

we visited dimension k--recall that we save these vectors after transmission. If we observe absolutely no

difference between the vectors we are about to send and those we last sent, then there is no need to resend

the synchronization message. This idea (called lazy cancellation[12]) has been developed in the parallel

simulation world, and has proven to be effective.

Since O(log P) counts are transmitted and analyzed at each of log P steps, the algorithm's time complexity

is O(log 2 P). In addition, O(logP) is space required at every processor to store the shell counts, and

synchronization vectors. Figure 5 gives the barrier logic (after the receipt of synchronization messages).

ll

Optimistic Barrier Synchronization Algorithm (viewed from Processor i)

1. If D = 0 and s = l, initialize

SendVeco(i)= [Sendo({i}),...,Sendp_t({i))]

and

RecvVeco(i) = [Recvo({i}),..., Recvn_l({i})].

Otherwise recover the saved copies of SendVeco(i) and RecvVeeD(i). After initialization, we

call these vectors working copies.

2. If D = 0 and i is a hermit, save SendVeeo(i) and ReevVeco(i) (as SendVecl(i) and

RecvVecl(i)), set D = 1, goto (1).

3. Send the working copies of SendVecD(i) and RecvVeeD(i) to riD(i) (and to i - I, if i is a

messenger in dimension D), provided that s = 1 and either the working copy of SendVecD(i)

is not identical to the last saved copy of SendVecD(i), or the working copy of RecvVecD(i) is

not identical to the last saved copy of RecvVecD(i). lfa message is sent at this step, then save

SendVecD(i) and ReevVecD(i).

4. Set s = 0.

5. If a synchronization message in dimension D has not been received, return false. Otherwise, if

Send Veco(i) and Recv VecD(i) are not in agreement with the synchronization message, return
false.

6. If D = p- 1 then set D = 0 and s = 1, release all saved messages and vectors, then return
true.

7. Compute working copies of SendVeeD+l (i) and RecvVecD+l(i) as

SendVecD+l(i) =- [SendD+l(CD(i)) + SendD+l(CD(nD(i)))

Sendp_l(Co(i)) + Sendp_,(Co(nD(i)))]

and

Recv VecD+l (i) = [RecvD+l(CD(i)) + RecvD+l (CD(nD(i))),...

Recvp_l (CD(i)) + Recvp_,(CD(no(i)))].

8. Set D= D+I, s= l, goto (3).

Figure 5: Optimistic Barrier Synchronization Algorithm

12

3.3 Correctness

Finally, we establish the correctness of the algorithm. We need to show both that tile algorithm terminates,

and that no processor leaves the harrier prematurely. The lemma below establishes termination.

Lemma 1 For every dimension k there exists a time tk such that after time tk no processor reenters the

barrier logic with barrier stale value D = k.

Proof." We induct on the dimension, k. Consider the base case of k = 0. Eventually tile last computation

message associated with this barrier phase will be sent, and received, say at time T. We may assume that

measures (described earlier) are taken to prevent receipt of a computation message from any subsequent

barrier phase. Thus, after time T it is not possible for any processor to be rolled back due to the arrival of a

computation message. Furthermore, after time T each processor i's individual ,qendm({i)) and Recvm({i))

counts will equal TotalSendm({i}) and TotalRecvm({i)), respectively. Consequently, any synchronization

vectors sent in dimension 0 after time T will reflect completed send/receive totals, and any two processors

synchronizing in dimension 0 after time T must find themselves in agreement. Thus, the only way a proces-

sor can enter and exit the barrier logic in dimension 0 after time T is if it fails to find a message from its

dimension 0 neighbor (or a messenger). Clearly that message must eventually arrive, since by definition of

T it must eventually be sent. Consequently, every processor must eventually advance to dimension 1; to is

the time at which the last one does. For the induction hypothesis suppose there exists a dimension/c - 1

and time tk-1 such that after time tk-1 no processor reenters the barrier in a dimension smaller than k - 1.

The proof of the induction step is entirely similar to that of the base case, with tk-i playing the role of T.

|

The final step is to show that no processor leaves the barrier before every processor has received and

processed all of its messages from the barrier phase.

Lemma 2 For each processor i let si be the time at which it completes processing of its last computation

message in the current phase, and let ei be the time at which it departs the barrier. Then for every i,

ei > maxj{s_}.

Proof: We induct on p, the dimension of the system. The base case of p = 0 is trivially satisfied. Suppose

then that the result holds for all systems of dimension p- 1. Consider a system of dimension p, choose any

processor i and consider the time ei at which i departs the barrier. Now for i to depart it must be true that

13

bothi and nv_ 1(i) passed through dimension p - 2, say at times u and v respectively. We can view C'p_ _(i)

and Cv_l(np_l(i)) (or Cp_l(i + 1), as appropriate) as separate systems of dimension p- 1, and consider u

and v to be departure times in the smaller systems (respectively). For every processor j in C v_l(i) let aj

be the time at which j completes processing of its last message from another processor in Cp_l(i); similarly

define bk for any processor k in Cp-l(np-l(i)). By the induction hypothesis we have u > maxj{aj} and

v > maxk{bk}. Observe that

ei > max{_, v} > mazt,k{a _, bk}.

We claim that ai = s t and bk = sk, for all j and k, for suppose not. s_ > bk only if processor k even-

tually receives a message from some processor in Cp_l(i). This message must be accounted for as part

of i's vector SendVe%_l(i) (since i does no message processing after time u), but is not accounted for in

Recv Ve%_ _(np_ 2(i)). This is a contradiction however, for i to depart the barrier it must first be in agreement

with nv_l(i). Thus sk = be for all processors k in Cp_l(nr_i(i)) (and similarly s t = a i for all processors j

in Cp-l(i)), completing the induction. II

4 Empirical Results

Our optimistic barrier provides more flexibility than a conventional barrier, but at a cost. Our algorithm

sends vectors of data at each synchronization, it compares vectors prior to transmission in an effort to avoid

unnecessary retransmission, and it implements message passing logic at the user level. All of these activities

exact costs not suffered by an optimized conventional barrier. In this section we endevour to quantify these

costs, by comparing the performance of our barrier with that of the conventional barrier provided on a

large-scale parallel architecture.

We first quantify the relative cost of our algorithm in the absence of rollbacks. Table 1 presents timings

from the lntel Touchstone Delta[7]. The Delta is a mesh architecture, with 560 total processors. The global

synchronization provided with the systern--gsync ()--does not work precisely like the standard barrier we

described earlier, as it is optimized for a mesh, not a hypercube.

These experiments simply call the barrier algorithms repeatedly. The numbers presented are averages

taken over thousands of calls. Since there is no other message passing, our algorithm does not rollback. Even

so, our algorithm experiences memory copy and comparison costs at every step. These measurements show

that that on large architectures, the cost of our barrier is only slightly more than twice that of gsync().

14

Size
3x 3 1.14ms
4 × 4 1.30 ms

5 x 5 1.40 ms

6 × 6 1.57 Iris

7 x 7 1.73 i"ns

8 × 8 2.0 ms

9 x 9 2.0 ms

opt barrier gsync Size opt barrier gsync

0.56 ms

0.56 ms

0.65 ms

0.74 ms

0.82 ms

0.92 ms

0.94 ms

10 x 10

11 x 11

12 x 12

13 x 13

14 x 14

15 x 15

16 x 16

2110 ms

2.19 ms

2.29 ms

2.38 ms

2.49 ms

2.53 ms

2.71 ms

1.00 ms

1.05 ins

1.09 ms

1.14 ms

1.17 ms

1.20 ms

1.24 ms

Table 1: Comparison of time required to execute optimistic barrier vs. time required to execute gsync () on

Intel Touchstone Delta.

Size

3 x 3 0.41 ms

4 x 4 0.30 ms

5 x 5 0.29 ms

6 x 6 0.29 ins

7 x 7 0.29 ms

8 x 8 0.28 ms

9 x 9 0.26 ms

opt barrier gsync Size opt barrier gsync

0.13 ms

0.09 ms

0.08 ms

0.08 ms

0.08 ins

0.08 ms

0.08 ms

i0 x i0

11 x 11

12 x 12

13 x 13

14 x 14

15 x 15

16 x 16

0.26 ms

0.26 ms

0.25 ms

0.25 ms

0.24 ms

0.24 ms

0.24 ms

0.08 ms

0.07 ms

0.07 ms

0.07 ms

0.07 ms

0,07 ms

0.07 ms

Table 2: Comparison of optimistic barrier and gsync() on Intel Touchstone Delta; the experiment measures

time-per-hop when cycling a message.

Considering all of the extra costs involved and the fact that gsync () is optimized for the mesh architecture,

we view this as very encouraging. So long as the cost of the computation of interest is not dominated by the

barrier, the relative expense of using an optimistic barrier is not large.

A second set of experiments is designed to measure relative costs in the presence of rollbacks. In these

experiments each processor is to receive, and send, one message. A cycle begins with processor 0, who sends

a message to processor 1. Upon receipt of a message, processor i (i # 0) sends a message to processor

(i + 1) mod P. The cycle completes when 0 receives a message. Implementation using an optimistic barrier

lets the barrier logic determine when all messages to be generated have been (after 0 reenters the barrier

after receiving a message). Observe that receipt of every message will cause a rollback in the receiving

processor. Implementation using gsync () simply has a processor block waiting for its single message, send

a message upon its receipt, and then call gsync(). Table 2 gives the average times required to complete a

cycle, divided by the number of processors used.

Now we find that the cost of using an optimistic barrier is over three times that of using gsync(). This

15

,0 _ I i I ' I

3.5

3.0

2.5

_ 2.0

l.O -r- " ' -T- -,-
0 2 4 6 8

Msg Processing Cost(msec)

Figure 6: Ratio of time required to complete a cycle using an optimistic barrier, to that required using

gsync()

ought to be viewed as an upper bound, since any computation related to message passing will be tile same in

both versions, and will serve to lessen the ratio of their running times. A final set of experiments illustrates

this point, by modeling the cost of message processing. These experiments are identical in structure to the

previous set,, save that upon receiving a message, a processor waits for a specified period of time before sending

the message on. The parameter in these experiments is the average number of milliseconds a processor waits.

Figure 6 plots the ratio of time required by our algorithm to complete a cycle, to the time required using

gsync(), using 256 processors. Here we see that even under a modest half millisecond message processing

time, use of our optimistic barrier is only 30% more expensive than gsync(); at higher message processing

costs the relative difference is well under 5%.

We also examined the cost of our algorithm vs gsync() on an Intel iPSC/860 multiprocessor. This

architecture has a hypercube topology. In these experiments processor counts were always powers of two,

and synchronization messages were always exchanged between processors that are directly connected. The

relative difference between our algorithm and gsync() was observed to be nearly identical to that observed

on the Delta, implying that the the network bandwidth of the Delta is sufficient to support our algorithm's

"artificial" tree construction without significant cost to performance.

5 Extensions

Next we consider extending the optimistic barrier algorithm to include the optimistic computation (with

global barrier synchronization) of any reduction operation of an associative operator ®, as well a.s an opti-

16

misticparallelprefixcomputationof ®. Thefactthatthis ispossibleisevidentfromouralgorithm'sbasis

in atreestructure;thecomputationof reductionsandprefixoperationsoil treesis alreadywell-understood

[1];thepointof thissectionisgiveenoughdetailsitrshowwhereouralgorithmcan be modified to support

these operations.

Let S be a set, and ® : $ x S _ S be an associative operator. Imagine that after processing all messages,

each processor i has computed some mi E S, and we desire that every processor learn the reduced element

m0 _ rnl ®... ® me_ 1. This is easily accomplished with a small modification to our barrier algorithm. First

we introduce some new definitions.

Processors in a sequence Ck(i) have contiguous ids; define lk(i) to be lowest element and uk(i) to b, the

greatest element of this sequence. Also define

Mk(i) = rnl_(i)® m_(i)+l ®... ut,,_(i).

When i and nk(i) synchronize, suppose that i knows Mk(i), nk(i) knows Mk(nk(i)) and these elements

are exchanged. This is clearly possible for k = 0, as Mo(i) = rnl and Mo(no(i)) = m_0(i). At an arbitrary

dimension k, given Mk(i) and Mk(nk(i)) i and nk(i) can compute Mk+t(i) = Mk+l(nk(i)) = Mk(i)C_

M_(nk(i)) (assuming here that i < nk(i)). This is merely a percolation of partial sums up the tree, which

is standard practice in reduction algorithms. Continuing in this fashion, at the point processor i leaves

the barrier it will have computed Mp(i), which is the desired reduced value. To incorporate reduction

in the harrier, all we need to do is include the element Me(i) with Send#(i) and Recv_(i) as part of the

synchronization vector, saving it and restoring it when the synchronization vector is saved and restored, and

to add the additional logic needed to implement ® in the right order.

The barrier can also be extended to provide parallel prefix computations. In these, we compute m_ = m0,

m_ = m0 ® uh, m_ = m0 ® ml ® m2, and so on, all the way up to m___ = m0 ® ml ...® rap-1. Processor

i receives one element of this sequence, m_. We assume that the elements Mk(i) described for the reduction

operation are being computed, and will use them in such a way that processor i can construct its prefix

element.

Given processor id i, for k = 0 , p- 1 define bk to be 1 if C_:(i) is the right child of its parent, and to be

0 otherwise. Observe that if P = 2 p, then the bits {bk} describe i's id in the base 2 number system. In the

general case, i is uniquely identified by these bits. We exploit the following result, based on this definition.

Lemma 3 For any processor i, define bit code bk (k = 0,...,p- 1) to be 1 if C_(i) is the right child of its

parent, and to be 0 otherwise. Let the dimensions in which bk = 1 be enumerated as do,...,d,, _n ascending

17

order. Then

,n I = Aid, (rid, (i)) _ Md,_, (rid,_, (i)) ® . .. _ Mdo(ndo (i)) _ m,.

Proof: Induct on the system dimension p. The base case is immediate. For the induction hypothesis,

suppose tile result holds for any system of dimension k - 1, and consider processor i in a system of dimension

k. If Ck(i) is the left child of it's parent we are done, by the induction hypothesis, for then i is a member

of a system of dimension k - 1. Otherwise, we must have bk = 1, and dk = k. We may write i = lk(i) + _,

and consider _ as a member of a system (rooted in Ck(i)) of dimension k - 1. Let u = talk(i) ® ... ® mi;

this is the prefix element for _ in the reduced system. Let d0,dl,...,dt enumerate in ascending order the

dimensions in which _'s bit codes are non-zero. Then by the induction hypothesis

u = Md,(i) ®... ® Mdo(i) ® rni.

The induction is completed by the observation that m} = Mk(nk(i)) ® u, and that d, = k.

Lemma 3 shows how each processor i can combine the elements Mk(i) it computes to form m_. Define

Fk(i) be the "working" value of the prefix at dimension k. Initially Fo(i) = nq. We have assumed already

that Mk(i) is computed upon passing through dimension k. Then, if i's bit code bk is set, it computes

F_+_(i) = M_(n_(i)) ® F_(i); otherwise Fk+_(i) = F_(i). As an illustration, consider the computation of

m_ in the six processor system depicted in Figure 1. Processor 4's bit codes are b0 = 1, bl = 0, and b2 = 1.

Synchronizing in dimension 0, processor 3 sends m3 = M0(n0(4)) to processor 4. Since b0 = i, processor 4

computes F_ (4) = M0(n0(4))_ F0(4) = ma ®m4. After synchronizing in dimension 1, F2(4) = F,(4) because

bl = 0. Synchronizing in dimension 2, processor 1 sends M_(C2(n2(4)) = rn0 ® mi ® m2 to processor 4, who

computes m_ = F3(4) = ,_.I2((72(n2(4)) (_ F2(4).

Although the Fk(i) elements are not exchanged with other processors, they do form part of the barrier's

state, and ought to be saved and restored in the same fashion as the send/receive vectors, and the Mk(i)

elements.

6 Summary

Barrier synchronization is an integral part of many parallel algorithms. All barrier algorithms of which we

are aware assume that. a processor knows when it is safe to enter the barrier. However, for some applications

18

is it difficultto determinewhena processorhascompletedall workthat mightberequired of it prior to

synchronization. We first encountered this problem in the context of parallel discrete event simulation, yet

we believe the problem may occur for any computation whose behavior is driven by the receipt and processing

of messages.

We propose a solution based on optimistic execution of a modified standard barrier algorithm. Our

algorithm differs from the standard technique in that (i) it permits a processor to back out of a barrier

when a computation message is received, (ii) the barrier computation is performed optimistica]]y (complete

with state-saving, rollback, and cancellation optimizations), and (iii) counts of messages send and received

between certain sets of processors are included in the synchronization messages, and are used to determine

when all processors have reached the barrier and have executed all workload necessary prior to the barrier.

Despite its seeming complexity, experiments on a large-scale multiprocessor show that ttle algorithm is only

2-3 times slower than the optimized deterministic barrier provided with the system, and that the relative

additional cost disappears when any significant computation is associated with handling a message.

Intel iPSC source code for the optimistic barrier is available by anonymous ftp to host cs .win. edu, in file

lSub/outgoing/opt_barrier.c (a listing of the contents of pub/outgoing cannot be read, but an ftp get on

the file will work).

Acknowledgements

We thank Albert Greenberg of AT&T Bell Labs for running our code (with the support of Sandia National

Labs) on the Intel Touchstone Delta machine. We also acknowledge the usefulness of discussions on opti-

mistic barrier synchronization with Phillip Dickens, Paul Reynolds, Richard Fujimoto, Lisa Sokol, and Harry

Jordan.

References

[1] S.G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs, N J, 1989.

[2] N.S. Arenstorf and H.F. Jordan. Comparing barrier algorithms. Parallel Computing, 12(2):157-170,

November 1989.

[3] T.S. Axelrod. Effects of synchronization barriers on multiprocessor performance. Parallel Computing,

3(2):129-140, May 1986.

19

[4]S.Bellenot.Globalvirtualtimealgorithms.In Distributed Simulation 1990, volume 22, pages 122-127.

SCS Simulation Series, 1990.

[5] S. Eick, A. Greenberg, B. Lubachevsky, and A. Weiss. Synchronous relaxation for parallel simulations

with applications to circuit-switched networks. In Proceedings of the 1991 Workshop on Parallel and

Distributed Simulation, pages 151-162, Jan. 1991.

[6] D. R. Jefferson. Virtual time. ACM Trans. on Programming Languages and Systems, 7(3):404-425,

1985.

[7] Sigurd L. Lillevik. The Touchstone 30 gigaflop DELTA prototype. In Distributed Memory Computer

Conference 91, pages 671-677. IEEEPRESS, April 1991.

[8] F. Mattern. Algorithms for distributed termination detection. Distributed Computing, 2:161 175, 1987.

[9] F. Mattern. Experience with a new distributed termination detection algorithm. In Distributed Algo-

rithms. Springer-Verlag, New York, 1987.

[10] P.F. Reynolds, Jr. An efficient framework for parallel simulations. In Advances in Parallel and Dis-

tributed Simulation, volume 23, pages 167-174. SCS Simulation Series, Jan. 1991.

[11] D.M. Nicol. Conservative parallel simulation of priority class queueing networks. IEEE Trans. on

Parallel and Distributed Systems, 3(3):294-303, May 1992.

[12] Peter L. Reiher, Richard Fujimoto, Steven Bellenot, and David Jefferson. Cancellation strategies in

optimistic execution systems. In Distributed Simulation 1990, pages 112 121. Society for Computer

Simulation, 1990.

[13] L.M. Sokol, D.P. Briscoe, and A.P. Wieland. MTW:A strategy for scheduling discrete simulation events

for concurrent execution. In Distributed Simulation 1988, pages 34 42. SCS Simulation Series, 1988.

[14] J.S. Steinman. Speedes: Synchronous parallel environment for emulation and discrete event simulation.

In Advances in Parallel and Distributed Simulation, volume 23, pages 95-103. SCS Simulation Series,

Jan. 1991.

[15] S. Turner and M. Qu. Performance evaluation of the bounded time warp algorithm. In Proceedings of

the 6 th Workshop on Parallel and Distributed Simulation, volume 24, pages 117--126. SCS Simulation

Series, 1992.

2O

Form Approved
REPORT DOCUMENTATION PAGE OMStvo.o7o*oIs8

PuDli(rPt_:)rlln_ Duraen +ortinsco_te_pon3f nfo r"a_+,or,__s +rnat_ _3 _,e.sgp " _:_uroer .esoorse ,ncluOin_the time tot reviewingmstru_lons searchlngex,stmg aata sources,
gathe_,_g_n(_rnamtamlngtheuata_eede_ ar'{_c_rro+et_ancre,_,P_,_+,'_e,:clleC_F¢_f,_tormatlon%enOcommentsregardln._th_sburctenest,mateoran_ othera_Dectofth+s
collect,on_t int_rmalrOn.,n_ualn__ugge'_t,o_tor reau<+r_":_,',_uraer :c _asmr_gton _eaOauarters5e_v,ce__rec_orateforIntorrna_lonODeratlon_ano RePorts.1215 Jeffer_o_
O_vr,_igh_a_,Suite 204 Arl,_g_o__'_ 22202-4_02 _na t__'_ ©_+ r_ Oi Man_q_e_i _nO _uoget P._erwot_ ReouctionPrcec-t(0704-0188),Wa_hrngton DC 20503

I1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE

July i992
4. TITLE AND SUBTITLE

OPTIMISTIC BARRIER SYNCHRONIZATION

6. AUTHOR(S)

David M. Nicol

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS(ES}

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. REPORTTYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NAS1-18605

WU 505-90-52-01

B. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 92-34

10. SPONSORING/ MONITORING
AGENCY REPORTNUMBER

NASA CR-189684

ICASE Report No. 92-34

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Michael F. Card

Final Report

12a. DIsTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 59, 61

Submitted to Journal of Parallel

& Distrihuted Computing

12b. DISTRIBUTION CODE

13. ABSTRACT(Maxlmum200words)

Barrier synchronization is a fundamental operation in parallel computation. In many

contexts, at the point a processor enters a barrier it knows that is has already pro-

cessed all work required of it prior to the synchronization. This paper treats the

alternative case, when a processor cannot enter a barrier with the assurance that it

has already performed all necessary pre-synchronization computation. The problem

arises when the number of pre-synchronization messages to be received by a processor

is unknown, for example, in a parallel discrete simulation or any other computation

that is largely driven by an unpredictable exchange of messages. We describe an op-

tlmistic O(log_P) barrier algorithm for such problems, study its performance on a

large-scale parallel system, and consider extensions to general associative reduc-

tions, as well as associative parallel prefix computations.

14. SUBJECT TERMS

synchronization; parallel simulation; optimistic computation;

parallel prefix

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

22
16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pr_scr_D(_ by ,_NSI %IC_ Z_9-18

298-102

NASA Langh'y, 1992

